Introduction to Java Servlet

Overview of Application Server

» For hosting template text / static pages /
hard coded (html) and server side
application (cgi / servlet)

» Most of the time integrated with a simple
web-server

» Can be plugged to a more powerful web-
server

» Ranging from million of dollars in pricing to
the open source project which is free

Overview of Application Server

» EXisting application server in the market
- Apache TOMCAT
o Xampp
- WAMP
- LAMP
> JRUN
> Jboss
> GlassFish

What is Servlet

a web component,
managed by a container (Application Server),
generates dynamic content. (HTML TAG)

- serving a different page according to client data
submitted via a form

- Or a GET method
small, platform independent Java classes compiled to

a bytecode that can be loaded dynamically into and
run by a web server.

» interact with web clients via a request response
paradigm implemented by the servlet container.

» request-response model is based on the behavior of
he Hypertext Transfer Protocol (HTTP).

v Vv Vv

v

Application Example

Web Information Systems
Distributed Computing
E-Commerce systems

Dynamic information systems - weather
reports, stock quotes, search engines etc.

Advantage of Servlet over CGl

» The most important factor - Server Process
- CGl, new process for every http request

- overhead of starting the process - dominate execution
time

> Servlets, JVM stay running and handle each request using
a lightweight Java thread

> CGl : N simultaneous request - CGI program load N times

- Servlet : N copy of thread but only one copy of the servlet
class

Advantage of Servlet

» Convenient

- for a Java programmer - no need to learn a new

language
. Powerful.

e Java servlets is a Java program and can do whatever
Java program can do in a local machine. This
simplifies operations that need to look up images
and other data stored in standard places.

e Servlets can also share data among each other,
making useful things like database connection
pools easy to implement.

e They can also maintain information from request to

request, simplifying things like session tracking
pecaching of previous computations.

Advantage of Servlet

. Portable.
o Servlets are written in Java and follow a well-
standardized APl - WORA. Consequently, servlets

written for, say |-Planet Enterprise Server can run
virtually unchanged on Apache, tomcat etc.

e Servlets are supported directly or via a plugin on almost
every major Web server.

- Inexpensive.
e There are a number of free or very inexpensive Web servers
available that are good for "personal” use or low-volume Web sites.

o However, with the major exception of Apache, which is free, most
commercial-quality Web servers are relatively expensive.

Servlet Tasks

. Read sent user data -

e via form (POST protocol) or
» embedded URL (GET protocol)

. Look up info on http request - usually form/POST
data or URL/GET data

. Generate result (connect to db etc.),
- Format the html result

. Set the appropriate http response parameters - set
content type html/text etc.

- Send document (HTML page) back to client browser

Client Interaction

- When a servlet accepts a call from a client, it
receives two objects:

. A ServletRequest, which encapsulates the
communication from the client to the server. -
getParameter()

- A ServletResponse, which encapsulates the
communication from the servlet back to the
client - out.println()

. ServletRequest and ServletResponse are
interfaces defined by the javax.servlet package

Request & Response Overview

/ Class Y- \
loader v
NO P

Invoker

1 HTTP request @ _

// ///yes
v
Is servlet /@

loaded?

v

5 HTTP response DR i @ """ {

service
thread

Browser
(WWW client)

—/

Application Server / HTTP SERVER
(Server)

Normal Servlet Operation

extends HttpServlet interface

implement one or more service methods
- doGet, doPost, etc

Setting the content type

» Data processing

» Formatting presentation HTML
» Returning a response

vV Vv

v

Intro to Netbeans - HelloWorld
servlet

 tag
<A> tag
<TABLE> tag

Data Transmission

» there are two ways on how browser can
send data to a servlet via HTTP protocol

> GET method

- POST method

GET method

. The body of the message (the data) is appended
to the servlet URL,
e http://localhost/servlet/HelloWorld

- Separated by a question mark
e http://localhost/servliet/HelloWorld®?

. Followed by name-value pair which separated by
equals sign

. If value consist of more than one word, separate
it using plus sign which the servilet will convert it
to space character after parsing
* name=a’june+ismail

. Every consecutive name-value pair will be
separated using ampersand sign (&)

name=ajune+ismail&ic=h0803907

Hello Get
Sum / Sum Oper GET
Table GET

p—

POST method

. The body of the message is sent as a stream
of data (HTML form data)

- Separated with the servlet URL

. Client send data to servlet using HTML form
element

HTML Form element

- Form tag
<FORM METHOD="post”
ACTION="/servlet/HelloWorld”
TARGET="frameName” >
. Fill the TARGET value if form result have to
display in a different frame

. After coding all the form element (button,
textfield, etc) FORM tag must be close using the
equivalent end tag - </FORM>

. If you have multiple form in a single page every
separate every form using the end tag

HTML Form element

- Textfield element
» Single line textbox

o Code example:
* <INPUT NAME="name" TYPE="text" SIZE="25">

- Password element
» Single line textbox - actual text hidden

o Code example:
* <INPUT NAME="password" TYPE="password" SIZE="25">

. TextArea element
o Multiline textbox
o Code example:

* <TEXTAREA NAME="address" ROWS="5H"
COLS="23"></TEXTAREA>

HTML Form element

. Combo Box

e Single item selection permitted
<SELECT NAME="creditCardType”>

<OPTION SELECTED VALUE="mc”>MasterCard
<OPTION VALUE="visa”>VISA

<OPTION VALUE="amex”>American Express
</SELECT>

« List Box

e Multiple item selection permitted
<SELECT NAME="language” MULTIPLE>
<OPTION SELECTED VALUE="c”>C
<OPTION VALUE="c++">C++

<OPTION VALUE="java”>Java
</SELECT>

HTML Form element

- Radio Button
. Only one item selection permitted

<INPUT TYPE="RADIO" NAME="creditCard"

VALUE="mc"
CHECKED>MasterCard

<INPUT TYPE="RADIO" NAME="creditCard"
VALUE="visa">VISA

<INPUT TYPE="RADIO" NAME="creditCard"
VALUE="amex">American

Express

HTML Form element

. CheckBox

» Name & Value attribute are only sent to the server
(servlet) if the check box is checked

e Usually servlet/CGI programs often check only for
the existence of the checkbox name, ignoring its
value

o Multiple item selection permitted

<P>
<INPUT TYPE="CHECKBOX" NAME="mailMe" CHECKED>

Check here 1f you want to get our emaill newsletter

HTML Form element

- Push Buttons
o Submit Buttons
<INPUT NAME="name" TYPE="submit"

VALUE="Submit">

e Change value of attribute VALUE if you want to change the
button label

o Reset Buttons
<INPUT NAME="name" TYPE="reset"
VALUE="Reset">

Form Servlet
Calc POST

Java Database Connectivity - JDBC API

» Java API for accessing virtually any kind of
tabular data

» Consists of
- a set of classes and interfaces
> written in the Java programming language that
- provide a standard API for tool/database developers
» Guarantee that an application can access
virtually any data source and run on any
platform with a Java Virtual Machine

4 types of JDBC Driver

» JDBC-ODBC Bridge plus ODBC driver

> provides JDBC access via ODBC drivers
- Windows platform only
- Cannot be used directly from browser (HTTP protocol)
- Can be solved by using a middleware such as RMI /
CORBA
» Native-API partly-Java driver
- driver converts JDBC calls into calls on the client API

> requires that some operating system-specific binary
code be loaded on each client machine

4 types of JDBC Driver

» JDBC-Net pure Java driver

> driver translates JDBC calls into a DBMS-independent net
protocol,

- act as middleware server
- able to connect its pure Java clients to many different
databases - the most flexible JDBC alternative
» Native-protocol pure Java driver

- converts JDBC calls directly into the network protocol used
by DBMS

> This allows a direct call from the client machine to the
DBMS server - perfect for Internet JDBC access

- available only by DBMS vendor - Oracle, Sybase etc.

Using JDBC

. Install Java and JDBC API on your machine - JDBC
preinstalled with JDK (standard API)

- Install a JDBC driver on your machine. - Usually DMBS
comes with its own JDBC driver
o JDBC-ODBC driver pre-installed with the JDK

. Install your DBMS if needed (connection can also be
done in remote)

. Setting Up a Database - creating table, relationships
etc.

. Establishing a Connection

e For selecting, adding, modifying and deleting
e Closing connection

Prepared SQL

» For each SQL statement received, the DB
builds a query plan by
> parsing the SQL statement
> reading the SQL to determine what to do
- formulating a plan for executing the SQL

» Repeatedly executing SQL with same query
plan is very inefficient

Prepared SQL (contd.)

» DBs enable you to optimize repeated calls
through prepared SQL.

» Create a Java instance of a prepared
statement that notifies the DB of the kind of
SQL call it represents.

» DB can then create a query plan for that SQL
even before it is actually executed.

» If the same prepared statement is executed
more than once, the DB uses the same query
plan without rebuilding a new one.

Normal SQL - query planning is
repeating each time SQL executed

Statement st = c.createStatement();
for (int i=0; i<accounts.length; i++)
st.executelUpdate("UPDATE account™ +

" SET balance = " + accounts[i].getBalance() +
" WHERE id = " + accounts[i].getId();

Using prepared statements Query planning done
once Statement can be executed repeatedly

[/ create S(QL statement with parameters

// query planning done ONCE only

PreparedStatement st = c.prepareStatement(
"UPDATE account™ +
" 5ET balance = ? ™ +
" WHERE id = ?");

~ (int i=0; i<accounts.length; i++) {
// bind the parameters
st.setFloat(1l, accounts[i].getBalance());

st.setInt(2, accounts[i].getId());

[/ /execute the statements
st.execute();

[//clear the parameters
st.clearParameters();

Prepared statement operations

1. Prepare the statement

// create S5QL statement with parameters
PreparedStatement st = c.prepareStatement("UPDATE student" +

" SET name = " +
" WHERE id = ?");

2. Fill in the statement parameters with data

[//get the data
String name = request.getParameter("name");

J//Till in the statement parameters with the data
st.setString(1, name);

3. Execute the statement

st.executelUpdate();

4. Process the result if there is any

Prepared statement operations

» Operation 1 do ONCE ONLY!

» Operation 2, 3 and 4 can be repeated
indefinitely using the prepared statements
in 1

Installing database

» We are using mysql database

» Download xampp and install

» Open phpmyadmin

» Import sqgl (use the one from dropbox)

Netbeans JDBC project

connect to mysqgl database

. Create new Java Web project

. Using windows explorer locate the project
folder

. Create lib folder in the project folder
Download mysqgl-connector-java-X.X. X.X-
bin.jar

> From

> From dropbox

. Copy the jar files in the lib folder (task 3)

. Right click Libraries in the netbeans project:
- choose Add Jar/Folder ...

0 A)dd the mysqgl-connector-java from the lib folder (task
5

https://dev.mysql.com/downloads/connector/j/

Netbeans JDBC project
connect to mysql database

Computer » MNew Volume (D:) » IP » jdbc » lib E‘@ jdbc

[T L B T W e B % o |||!3' WEhF‘EgEE

Include in library - Share with = Burn MNew fc -- \f5 Source Packages
- [+ | TestPackages

Name =@

mysqgl-connector-java-5. 1. 37-hin. jar
- B 10K 1.3 (Default)

. - GlassFish Server 4.1.1

-- & TestLibraries

- & Configuration Files

|| mysgl-connector-java-51.37-bin,jar

Custom JDBC class - JDBCUtility

» A constructor database connection details
> public JDBCUtility(String driver,

0 String url,

0 String userName,
0 String password)
SR

0 this.driver = driver;

o this.url = url;

0 this.userName = userName;

0 this.password = password;

Custom JDBC class - JDBCUtility

» A method for initiating connection to the
database pulic. void jdbcComect()

1

try

{
Class.forlName (driver);
con = DriverManager.getConnection(url, userName, password);
DatabaseMetaData dma = con.getMetaData ();
System.out.println("\nConnected to " + dma.getURL({));
System.out.println("Driver " + dma.getDriverName());
System.out.println("Version " + dma.getDriverVersion());
System.out.println("");

}

catch (SQLException ex)

I
L

while (ex != null)
System.out.println ("SQLState: " +
ex.getSQLState ());
System.out.println (“"Message: ™ +
ex.getMessage ());
System.out.println ("Vendor: "ox
ex.getErrorCode ());
ex = ex.getNextException ();
System.out.println ("");

hi

System.out.println(“Connection to the database error™);

1
1

catch (java.lang.Exception ex)

I
L

ex.printStackTrace ();

1
1

JDBC - initial data

» Create variables for representing all the
prepared statements needed

PreparedStatement psInsertStudent null;
PreparedStatement psSelectAllStudent null;
PreparedStatement psSelectStudentViaMatriks = 1
PreparedStatement psUpdateStudentNameViaMatriks
PreparedStatement psDeleteStudentViaMatriks = null;

Prepared Statement - get method
to use the statement in servlet for later

PreparedStatement psSelectAllStudent()

psSelectAllStudent;

PreparedStatement psSelectStudentViaMatriks()

psSelectStudentViaMatriks;

PreparedStatement psInsertStudent()

psInsertStudent;

PreparedStatement psUpdateStudentNameViaMatriks()

psUpdateStudentNameViaMatriks;

PreparedStatement psDeleteStudentViaMatriks()

psDeleteStudentViaMatriks;

JDBC - method to execute the preparing
statements operation - ONCE ONLY!

void prepareSQLStatement()

String sqlSelectAllStudent "SELECT * FROM student™;
PreparedStatement psSelectAllStudent = con.prepareStatement(sglSelectAllStudent);

String sqlSelectStudentViaMatriks = "SELECT * FROM student where matriks = ?";
PreparedStatement psSelectStudentViaMatriks = con.prepareStatement(sqlSelectStudentViaMatriks);

String sqlInsertStudent = "INSERT INTO student(matriks, name, ic, age) VALUES(?, ?, ?, ?)";
PreparedStatement psInsertStudent = con.prepareStatement(sqlInsertStudent);

String sqlUpdateStudentNameViaMatriks = "UPDATE student SET name = ? WHERE matriks = ?";
PreparedStatement psUpdateStudentNameViaMatriks = con.prepareStatement(sglUpdateStudentNameViaMatriks);

String sqlDeleteStudentViaMatriks = "DELETE FROM student WHERE matriks = ?";
PreparedStatement psDeleteStudentViaMatriks = con.prepareStatement(sqlDeleteStudentViaMatriks);

Using the JDBC in servlet

1. Create global variables in servlet
- private JDBCUtility jdbcUtility;
- private Connection con;

2. In init method (THIS METHOD WILL BE CALLED
ONCE ONLY - refer slide 11)

- Call the constructor to instantiate the JDBCUtility object

- Call the connect method to initiate connection to the
database

- jdbcUtility.jdbcConnect();

- Get a working connection
- con = jdbcUtility.jdbcGetConnection();

- Execute the preparing of statements operation
- jdbcUtility.prepareSQLStatement();

SQLInsertServlet HttpServiet {

JDBCUtility jdbcUtility;
Connection con;

void init() ServletException
String driver = "com.mysqgl.jdbc.Driver";

String dbName "scj23e3";
String url = "jdbc:mysql://localhost/"™ + dbName + "?";
String userName = "root";

1

String password ;

jdbcUtility JbBCUtility(driver,
url,
userName,
password) ;

jdbcUtility. jdbcConnect();
con = jdbcUtility.jdbcGetConnection();

jdbcUtility . preparesSQLStatement();

Get the prepared statement needed,

fill the data and execute

String matriks = request.getParameter("matriks");
String name request.getParameter("name");
String ic = request.getParameter("ic"

String age = request.getParameter("age");

{
PreparedStatement preparedStatement = jdbcUtility.psInsertStudent();

preparedStatement.setString(1l, matriks);
preparedStatement.setString(2, name);
preparedStatement.setString(3, ic);
preparedStatement.setString(4, age);

preparedStatement . executeUpdate();

out.println("<p>Student matriks " + matriks + "</p>");
out.println("<p>Student name : " + name + "</p>");
out.println("<p>Student IC "o+ dic + "e/pe");
out.println("<p>Student age "+ age + "</p>");

(SQLException ex)
(ex null)

System.out.println ("SQLState: "
ex.getsQLState ());
System.out.println ("Message: "
ex.getMessage ());
System.out.println ("Vendor: "
ex.getErrorCode ());
ex - ex.getNextException ():

JDBC project

» INSERT record

> Run the project - (running the index.html)
- Will display the form
- Form action directed to DBInsertStudent servlet

» SELECT all record (view in table)
> Run the servlet: DBSelect

» UPDATE record

- Must select the record first using the primary key
- Servlet name: DBUpdateForm
- GET method data: matriks

> Put the record into form

- Form action directed to DBUpdateStudent serviet

JDBC project

» DELETE record

- Servlet name: DBDeleteStudentViaMatriks
- GET method data: matriks

» DBDataTable

- CRUD operations

- C-reate - SQL INSERT operation (DBInsertStudent
servlet)

- R-ead - SQL SELECT operation (DBSelect servlet)

- U-pdate - SQL UPDATE operation (DBUpdateStudent
servlet)

- D-elete - SQL DELETE operation
(DBDeleteStudentViaMatriks servlet)

- All operations in one single page

Persistent State in HTTP Servlets

» HTTP transactions are made in isolation of one
another

- do not have a mechanism for keeping track of a
request or request data sent using a web browser

> said to be “stateless”
» Benefit

> Client browsers do not notice when a server goes down
and comes up quickly

» Drawback

- difficult to produce groups of pages for collecting
information to produce picture of the user’s web
experience

Session tracking methods

» Cookies (netbeans example: cookies /

cookiesshare

- small size of information left by the server at client machine
(in browser cookies repository)

- misinformation about cookies

- Never interpreted or executed
- browsers generally only accept 20 cookies per site
- and 300 cookies and limited to 4 kilobytes per size

- cannot be used to fill up someone’s disk or launch
other denial of service attack
e problem

e User disable browser cookies
e tO protect privacy

Session tracking methods

- URL Rewriting.

o append some extra data on the end of each URL that
identifies the session, and the server associate that

session identifier with data it has stored about that
session.

» Excellent solution with browsers that don't support
cookies or where the user has disabled cookies.

» However, it has most of the same problems as
cookies, namely that the server-side program has a
ot of straightforward but tedious processing to do.

e In addition, you have to be very careful if the user

eaves the session and comes back via a bookmark or
ink, the session information can be lost.

Session tracking methods
. Hidden form fields.

e HTML forms have an entry that looks like the following:
<INPUT TYPE="HIDDEN" NAME="session" VALUE="...">

e This means that, when the form is submitted, the
specified name and value are included in the GET or POST
data.

e This can be used to store information about the session.

 However, it has the major disadvantage that it only works

if every page is dynamically generated, since the whole
point is that each session has a unique identifier.

otbeans example: hidden

Session management in Servlet

. HttpSession API.

» high-level interface built on top of cookies or
URL-rewriting.
o use cookies if the browser supports them,

e automatically revert to URL-rewriting when
cookies are unsupported or explicitly disabled.

o servlet author doesn't need to bother with many
of the details,

e doesn't have to explicitly manipulate cookies
e or information appended to the URL,

e automatically given a convenient place to store
data that is associated with each session.

HttpSession API

. Provides a way to identify a user across more
than one page request

. Create a session between an HTTP client and an
HTTP server.

. session persists for a specified time period,
across more than one connection or page
request from the user.

. usually corresponds to one user

. allows servlet to

e View and manipulate information about a session, such as
the session identifier, creation time, and last accessed
time

» Bind objects to sessions, allowing user information to

hersist across multiple user connections

HttpSession API

. Looking up the session object associated with
the current request,

e HttpSession session =
request.getSession() ;

e Returns the current session associated with

this request, or if the request does not have
a session, creates one.

e HttpSession session =
request.getSession (boolean param);
e param=true - to create a new session for

this request if necessary;

o aram =false to return null if there's no
- CUTre ession

HttpSession API

- Binds an object to this session, using the name
specified.
. If an object of the same name is already bound to

the session, the object is replaced

 void setAttribute(java.lang.String name, java.lang.Object
value)

. Returns the object bound with the specified name
in this session, or null if no object is bound under

the name
» java.lang.Object getAttribute(java.lang.String name)

HttpSession API

. Specifies the time, in seconds, between client
requests before the servlet container will invalidate
this session. A negative time indicates the session
should never timeout.

» void setMaxlnactivelnterval(int interval)
e interval in seconds

e default 30 minutes

. Invalidates this session and unbinds any objects
bound to it (remove current session)
 void invalidate()

